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The fundamental frequencies of laminated anisotropic circular cylindrical composite
shells are investigated by using nine-noded isoparametric quadratic finite elements based
on extended Sanders’ first order shear deformable shell theory. Finite element (FE) results
are presented for cylinders and compared with the exact results obtained by a computer
program written by the authors and using the same shear deformable theory. Such
comparisons are important to validate the FE method, because exact results can be
obtained for only a few special lamination and boundary cases, and cannot be applied to
cylinders with non-uniform structural or loading characteristics, holes, etc. In addition,
results are compared with shear deformable results obtained by using numerous flat strips
and the exact flat strip program VICONOPT. The agreement of the finite element results
with the exact results is found to be good, including degenerated cases in which the shear
stiffness approaches infinity: i.e., classical results. The effects of boundary conditions and
lamination schemes on the fundamental frequency are also investigated. It is found that
cylinders require many more elements than might be predicted from open shell panels in
order to obtain any specified accuracy.
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1. INTRODUCTION

The range of applications of composite materials in a variety of structures has increased
rapidly and quite often includes laminated composite cylindrical shells.

In early research on laminated anisotropic thin shells the Kirchhoff–Love hypothesis was
used: i.e., transverse shear deformation was neglected. This could lead to 30% or higher
errors for deflections and frequencies. Reddy [1–3] extended Sanders’ first order shear
deformation theory [4] for doubly curved isotropic shells to cover laminated anisotropic
shells, including finite element and exact results for the deflections and frequencies of
simply supported, doubly curved laminated shells. Chandrashekhara [5] also presented
numerical results for the free vibration of doubly curved laminated open shell panels based
on the first order shear deformation model. While vibration problems for shells of
revolution can certainly be analyzed more efficiently by using one-dimensional
semi-analytical axisymmetric elements, in engineering applications the load and/or pattern
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of openings and/or distribution of attached masses are often asymmetric, so that
discretization of the entire surface is required, using two dimensional elements.

Published results using Reddy’s theory, including those cited above, only demonstrate
its efficiency for open shell panels. Therefore the present paper investigates its efficiency
for the vibration of laminated cylinders by comparing results obtained from two computer
codes developed for this paper. These both use Reddy’s theory [3], but differ because one
uses finite elements while the other is exact, but can only solve a limited range of problems.

To enable the comparisons to be made, a nine-noded shear deformable finite element
model is developed, which has nodes at its corners, the mid-lengths of its sides and its
centre. To confirm the reliability of this finite element and of the associated computer codes
(which are used for all of the FEM results presented), numerical results are first compared
with exact solutions for cross-ply spherical and cylindrical shell panels and for
antisymmetric angle-ply flat laminated plates. Finite element results obtained for the
fundamental frequency of various simply supported laminated cylinders are then compared
with exact first order shear deformable theory results, degenerated results obtained by
artificially assuming high transverse shear modulus for the laminates, and Donnell type
classical solutions. Additionally, it is shown that the exact results and the corresponding
degenerated results coincide very well with, respectively, shear deformable and classical
results obtained by using numerous flat strips and the exact flat strip program VICONOPT
[6, 7]. Finally, the influence of boundary conditions and laminate configurations on the
fundamental frequencies of laminated cylinders are investigated.

2. FINITE ELEMENT FORMULATION

Let the x–y surface of the orthogonal curvilinear shell co-ordinates coincide with the
mid-surface of a composite shell, so that the z-axis is normal to it; see Figure 1. The shell
consists of a finite number of plies, with the major material axis lying in the x–y surface
with an arbitrary inclination to the x-axis. In first order shear deformable shell theory,
normals to the mid-surface of the shell before deformation are assumed to remain straight,
but not necessarily normal, after deformation, to give the displacement field as [3]

ū=(1+ z/R1)u+ zfx , v̄=(1+ z/R2)v+ zfy , w̄ =w, (1)

where (see Figure 1) ū, v̄ and w̄ are the displacements of a point (x, y, z) parallel to the
co-ordinates x, y and z respectively; similarly u, v and w are the displacements of a point
(x, y, 0) on the middle surface; fx and fy are the rotations of the line normal to the middle
surface about the y- and x-axis, respectively; and R1 and R2 are the principal radii of

Figure 1. The geometry and displacements of a laminated doubly curved shell panel.
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curvature of the middle surface. The strain displacement relations of the shear deformable
doubly curved shell element are

o1 = o0
1 + zk1, o2 = o0

2 + zk2,

o4 = o0
4, o5 = o0

5, o6 = o0
6 + zk6, (2)

where oi (i=1, 2, 6) are the in-plane strains and o4 and o5 are the transverse shear strains
at the point (x, y, z), and

o0
1 = 1u/1x+w/R1, o0

2 = 1v/1y+w/R2, o0
4 =fy + 1w/1y− v/R2,

o0
5 =fx + 1w/1x− u/R1, o0

6 = 1u/1y+ 1v/1x, k1 = 1fx /1x, k2 = 1fy /1y,

k6 = 1fx /1y+ 1fy /1x−C0(1v/1x− 1u/1y), C0 = (1/2){(1/R1)− (1/R2)}.

Applying Hamilton’s principle to the Lagrangian variational of the shell yields

gV

[N1do0
1 +N2do0

2 +N6do0
6 +M1dk1 +M2dk2 +M6dk6 +Q1do0

5

+Q2do0
4 + (P1ü+P2f� x ) du+(P3v̈+P4f� y ) dv+ I1ẅ dw

+(I3f� x +P2ü)dfx +(I3f� y +P4v̈)dfy ] dx dy=0, (3)

where V is the area of the middle surface, the Ni , Mi and Qi are the stress, moment and
transverse shear force resultants given by

(Ni , Mi )= s
p

j=1 g
zj+1

zj

si (1, z) dz, i=1, 2, 6,

(Q1, Q2)= s
p

j=1 g
zj+1

zj

(K2
1s5, K2

2s4) dz, (4)

the si (i=1, 2, 6) are the in-plane stresses and s4 and s5 are the transverse shear stresses,
zj and zj+1 denote the surfaces of the jth ply, p is the number of plies in the shell,
K1 =K2 =5/6 are the shear correction factors, the Pi are defined as

P1 = I1 +2I2/R1, P2 = I2 + I3/R1, P3 = I1 +2I2/R2, P4 = I2 + I3/R2, (5)

and

(I1, I2, I3)= s
p

j=1 g
zj+1

zj

r(j)(1, z, z2) dz

where r(j) is the mass density of the jth ply. The stress resultants are related to the strains by

Ni =Aijo
0
j +Bijkj , Mi =Bijo

0
j +Dijkj , i, j=1, 2, 6,

Q1 =A45o
0
4 +A55o

0
5, Q2 =A44o

0
4 +A45o

0
5, (6)

where the Aij , Bij and Dij are the stiffness coefficients of the laminate, so that

(Aij , Bij , Dij )= s
p

k=1 g
zk

zk−1

Qij (1, z, z2) dz, i, j=1, 2, 6,
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the shear stiffness coefficients are

(A44, A45, A55)= s
p

k=1 g
zk

zk−1

(K2
1Q44, K1K2Q45, K2

2Q55) dz,

and the Qij (i, j=1, 2, 6, and i, j=4, 5) are the stiffnesses of a ply in the material principal
co-ordinates.

Typical nine-noded quadratic isoparametric finite elements are used to discretize the
middle surface of the shell, with the displacements (u, v, w, fx , fy ) interpolated over the
shell element by shape functions cj ( j=1, 9) such that

u= s
9

j=1

ujcj (x, y), v= s
9

j=1

vjcj (x, y), w= s
9

j=1

wjcj (x, y),

fx = s
9

j=1

fj
xcj (x, y), fy = s

9

j=1

fj
ycj (x, y), (7)

where uj, vj, wj, fj
x, and fj

y are nodal values of u, v, w, fx and fy , respectively.
Substitution of equation (7) into equation (3) gives the equations for the element as

[K]{d}+[M]{d� }= 0, (8)

where d is the vector of node displacements and [K] and [M] are, respectively, the element
stiffness and mass matrices. To avoid the shear locking effect, reduced integration is used
to evaluate the coefficients associated with transverse shear energy terms in the stiffness
matrix, while full integration is used to evaluate its other coefficients and all of the
coefficients in the mass matrix. For free vibration, d takes the form d(t)= d eivt. Assembly
of the element equations gives the eigenvalue problem

([K]−v2[M]){d}= 0, (9)

from which the fundamental frequency is found by using subspace iteration [8].

3. NUMERICAL RESULTS

The finite element results presented were obtained on a VAX computer, using single
precision arithmetic. In every case, the entire region of the shell was discretized without
making use of any preconceived assumption of symmetry of the vibration mode with
respect to the coordinates. The ply material properties assumed for all examples, in the
usual notation, were E11 =25E22, G12 =G13 =0·5E22, G23 =0·2E22, n12 =0·25 and mass
density r=1·0. The first three examples were used to test the validity of the formulation
and computer code, as follows.

Examples 1 and 2 were to find the fundamental frequency of two types of square
cross-ply shell panels with side length a; namely, a spherical shell panel and a cylindrical
shell panel. For both examples the alternative lay-ups (0/90) and (0, 90, 90, 0) were used,
the thickness h was 0·1a and the radius of curvature R ranged between a and near to
infinity: i.e., effectively a flat plate. The boundary conditions were SS2, i.e.,

u=w=fx =0 at y=0, a, v=w=fy =0 at x=0, a, (10)

the stiffness coefficients satisfy

A16 =A26 =B16 =B26 =D16 =D26 =A45 =0 (11)
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and the Euler equations of the variational equation (3) admit an exact solution when the
spatial variation of displacements takes the form [3]

u(x, y)=Umn cos ax sin by, v(x, y)=Vmn sin ax cos by,

w(x, y)=Wmn sin ax sin by, fx (x, y)=Fxmn cos ax sin by,

fy (x, y)=Fymn sin ax cos by, (12)

where a=mp/a and b= np/a. For both examples, the numbers of half-waves m and n
in the x and y directions for the vibration mode associated with the fundamental frequency
were always m= n=1. The FEM results obtained by using a 4×4 mesh all agreed to
an accuracy of 0·3% or better with the results given by the authors’ exact code, which was
based on equation (12). The results from this exact code also agreed very well with the
exact results given by Reddy [2].

Example 3 was chosen because antisymmetric angle-ply laminated shells with simply
supported boundary conditions do not admit exact solutions. Therefore Example 3
consists of the degenerate case of an antisymmetric angle-ply shell with its radii of
curvature approaching infinity such that it approximates a square flat plate. The FEM
results for its fundamental frequency were compared with corresponding exact flat plate
results for a (+u, −u, +u, −u) lay-up, for values of u in the range 0E uE 45°. The
boundary conditions were SS1, i.e.,

v=w=fx =0 at y=0, a u=w=fy =0 at x=0, a, (13)

the stiffness coefficients satisfy

A16 =A26 =B16 =B26 =D16 =D26 =A45 =0, (14)

and the Euler equations of the variational equation (3) admit an exact solution when the
spatial variation of displacements takes the form [3]

u(x, y)=Umn sin ax cos by, v(x, y)=Vmn cos ax sin by,

w(x, y)=Wmn sin ax sin by, fx (x, y)=Fxmn cos ax sin by,

fy (x, y)=Fymn sin ax cos by. (15)

The FEM results obtained by using a 4×4 mesh agreed to within 0·15% with those
obtained from the authors’ exact code, which used equation (15). The results from this
exact code also agreed well with those given by Reddy [3].

So far, the finite element method results have coincided very well with the exact results,
because the fundamental mode shapes for square plates and shell panels often have a single
half-wave in both directions. The agreement is less good for Example 4, as follows.

Example 4 is the following circular cylinder problem; see Figure 2. The middle
surface is the reference surface, the origin of the co-ordinates is at one of its ends,
and x, y and z are in the axial, circumferential and normal directions, respectively. The
length, wall thickness and radius of the cylinder are, respectively, L, h and R2. The
FEM results were compared with the exact dimensionless results for the simply supported
laminated circular cylindrical shell, with the non-dimensional circular frequency
defined as v̄=v(R2

2/h)z(r/E22).
An exact solution exists only for circular cylindrical shells with laminate stiffness

coefficients satisfying equation (11), and with SS2 end conditions: i.e., v=w=fy =0 at
x=0 and L. It is obtained by assuming that the displacement field has the form of
equation (12) with a=mp/L and b= n̄y/R2, where m is the number of half-waves in the
x direction while n̄ is the number of full waves round the circumference. Substituting
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Figure 2. The geometry of a laminated circular cylindrical shell. L=2R2 for all cylinder results presented.

equation (12) into the Euler equation, which can be derived from the variational equation
(3), yields a set of five linear algebraic eigenequations in terms of the unknown amplitudes
Umn , Vmn , Wmn , Fxmn and Fymn , from which the exact fundamental frequency can be
obtained, as shown in detail by Reddy [3]. The authors’ exact code used this method.

Note that in the FEM formulation the SS2 end conditions do not exclude a rigid body
movement of the circular cylinder in the x direction. Therefore the exact solution was
obtained first, to find the wavenumbers m and n̄ associated with the fundamental
frequency. Then, for the FEM results, the SS2 end conditions were supplemented by the
additional boundary conditions

u(0, y)=0, u(L, y)=0, when y=2ipR2/n̄, i=0, 1, 2, . . . , n̄−1, (16)

which are consistent with the exact solution because they are implied by its displacement
field: i.e., by equation (12).

In order to examine the effects of shear deformation, a degenerated case of Sanders’ first
order theory was used in which the transverse shear moduli G13 and G23 were multiplied
by 104: i.e., G13 =0·5×104E22 and G23 =0·2×104E22. Thus transverse shear deformation
was prevented and so the Kirchhoff hypothesis is implied.

In Table 1 are compared, for R2 =0·5L, the non-dimensional fundamental frequencies
of the FEM solutions with exact results from the authors’ code, degenerated solutions and
Donnell type classical thin shell results (see reference [9]), for six alternative lay-ups and
two alternative wall thicknesses. The first three lay-ups are typical cross-ply laminates,
while the next three are assumed to have an infinite number of +u, −u, +u, −u, . . . ,
plies of infinitesimal thickness, so that they satisfy equation (11). The finite element model
had either three or four elements in the axial direction and 10–20 elements for each wave
in the circumferential direction; see the column headed ‘‘Mesh’’ in Table 1.

Example 5 compares the exact solutions given in the bottom half of Table 1 and the
corresponding degenerated results with, respectively, shear deformable and classical results
obtained by VICONOPT. VICONOPT is an efficient design code [6] which was developed
on the basis of the Wittrick and Williams theory and algorithms [7]. Its theory provides
an exact solution for the buckling load and vibration frequency of structures which are
assumed to consist of a series of long flat strips rigidly connected together at their
longitudinal edges and simply supported at their ends. In Table 2 the frequencies were
calculated by modelling the cylinder as a polygon with a large number of sides and then
increasing the number of sides until the solution converged. The VICONOPT shear
deformable results, which used the theory of Anderson and Kennedy [10], clearly coincide
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T 1

Results for the fundamental frequency v̄ of Example 4; the error columns are relative to the
exact results

Degenerated Donnell’s
Shear deformable results theory

ZXXXXXXCXXXXXXV ZXXCXXV ZXXCXXV
Error Error Error

Lamination m, n̄ Exact FEM Mesh (%) (%) (%)

h=0·04 R2

0, 90 1, 3 9·510 9·526 4×60 0·17 9·500 −0·11 10·579 11·24
90, 0, 90, 0 1, 3 11·317 11·331 4×60 0·13 11·474 1·39 12·606 11·39
90, 0, 0, 90 1, 2 12·603 12·652 3×30 0·38 12·631 0·22 14·535 15·33

230* 1, 4 15·082 15·110 4×60 0·18 15·338 1·70 16·672 10·54
245* 1, 3 13·372 13·417 4×60 0·34 13·516 1·08 15·802 18·17
260* 1, 3 12·142 12·179 4×60 0·31 12·432 2·39 14·548 19·82

h=0·1 R2

0, 90 1, 2 5·115 5·142 3×20 0·54 5·146 0·61 6·228 21·76
90, 0, 90, 0 1, 2 5·910 5·924 3×30 0·24 6·014 1·76 7·116 20·41
90, 0, 0, 90 1, 2 6·004 6·019 4×30 0·25 6·235 3·85 7·870 31·08

230* 1, 3 9·644 9·661 4×45 0·18 10·235 6·13 10·879 12·81
245* 1, 3 8·500 8·516 4×45 0·19 9·632 13·32 11·930 40·35
260* 1, 2 6·912 6·931 4×40 0·27 7·112 2·89 9·829 42·20

* The number of plies is infinite.

quite well with Sanders’ first order shear deformable results, while the VICONOPT
classical results coincide even better with the degenerated ones.

Example 6 uses FEM results to demonstrate the effect on the fundamental frequency
of changing the end conditions of laminated cylindrical shells with L/R2 =2, h/R2 =0·02
and six alternative lay-ups; see Table 3. The SS3 and clamped end conditions at x=0 and
L were, respectively, u= v=w=fy =0 and u= v=w=fx =fy =0. Numerical
experiments were performed with different grid sizes to ensure that the results presented
are sufficiently accurate.

Finally, Example 7 examines the effect on the fundamental frequency of a clamped
cylinder of changing the lay-up detail; see Figure 3. It gives the non-dimensional

T 2

VICONOPT shear deformable and classical results for the fundamental frequencies v̄ of
Example 5 compared with results from the authors’ exact code based on Reddy’s theory [3];

the difference columns are relative to the exact and degenerated results, respectively

h=0·1 R2, VICONOPT Difference VICONOPT Difference
lay-up Exact shear (%) Degenerated classical (%)

0, 90 5·115 5·103 −0·23 5·146 5·132 −0·27
90, 0, 90, 0 5·910 5·880 −0·51 6·014 6·010 −0·07
90, 0, 0, 90 6·004 5·956 −0·80 6·235 6·242 0·11

230* 9·644 9·606 −0·39 10·235 10·184 −0·50
245* 8·500 8·430 −0·82 9·632 9·624 −0·08
260* 6·912 6·886 −0·38 7·112 7·102 −0·14

* The number of plies is infinite.
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T 3

FEM results for Example 6; i.e., for the fundamental frequency v̄ for
SS2, SS3 and clamped circular cylinders with h=0·02 R2

Boundary conditions
Lamination ZXXXXXXXXXCXXXXXXXXXV
(degrees) SS2 SS3 Clamped

0, 90 15·188 16·662 16·914
90, 0, 90, 0 18·359 18·870 20·349
90, 0, 0, 90 19·503 20·246 20·944

230* 20·681 28·184 29·674
245* 18·765 28·232 29·142
260* 17·604 26·126 26·546

* The number of plies is infinite.

fundamental frequencies for lay-ups with two, four or eight identical orthotropic plies with
alternating alignments of +u and −u, for all possible values of u.

4. DISCUSSION AND CONCLUSIONS

The first three examples show that the FEM presented is quite accurate and efficient for
analysis of open shell panels and plates. They also validate the authors’ computer codes
for both exact and FEM results.

The FEM results of Example 4 indicate that the number of elements needed in the
circumferential direction of a cylinder for relatively high accuracy is 5–10 for each
half-wave, whereas four elements per half-wave in each direction are usually sufficient for
practical open shell panels. The degenerated results show that the shear deformation effect
was not very significant for a cylinder with h=0·04 R2 but, depending on lamination
scheme, became more so for a thicker cylinder with h=0·1 R2. Donnell type thin shell
theory would not be expected to be very accurate for this type of problem and predicted
much higher frequencies, with errors ranging from 11% to 42% compared with exact first

Figure 3. The non-dimensional fundamental frequency for three lamination schemes, for a clamped cylinder
h=0·02 R2. – – – –, +u, −u; ——, +u, −u, +u, −u; ——, +u, −u, . . . , eight-layer.
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order Sanders’ theory. Therefore, Donnell type theory is inadequate for vibration analysis
of moderately thick composite cylinders.

The shear locking phenomenon in FEM analysis has been successfully circumvented by
using a reduced integration scheme, and the error caused by finite element modelling based
on first order shear deformable theory meets engineering requirements.

Because of Rayleigh’s theorem, the fundamental frequency of any cylinder must increase
as its boundary constraints are changed from SS2 to SS3 and then to clamped, since the
changes involve adding constraints without removing any. The results of Example 6 listed
in Table 3 satisfy this requirement and show that the increases are fairly small for cross-ply
laminated cylinders, whereas the increase between the SS2 and SS3 cases is large for
cylinders composed of an infinite number of 2u plies.

Finally, the results of Example 7 shown in Figure 3 demonstrate that the fundamental
frequency is increased significantly by increasing the number of layers while keeping the
total thickness of the cylinder constant, as also occurs for laminated flat plates.
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